
 tMysqlTableTransfer

Purpose

This component inserts records from one table into another table. It generates an internal field mapping, by matching
equal column names in both tables.
If there are columns which should not be transferred (e.g. because they are auto increment columns), you can exclude
them from the transfer with the Exclude fields section.
If the target table expects more columns filled with fixed values, you can add them in the Fixed Column Value section.
By using two asynchronous threads, the component gains more performance because the component can read and write
at the same time.
It’s main working scenario is copying data from one database to another or create backup files.

Talend-Integration

This component can be found in the palette under Database -> MySQL

Basic Settings

Property Content

Use data source Check this if the component should use a connection from a database connection pool.
Otherwise the component expects external connection components.

Source data source alias Set here the name of the database pool for the source connection.

Target data source alias Set here the name of the database pool for the target connection.

Source Connection The connection used to read the data. This is not necessarily a MySQL connection. The
component can also use connections from other databases. If there are some mismatches
between the data types, you can adjust the type mapping in the advanced settings in the
Custom Type Mapping.

Target Connection This must be a tMysqlConnection. This connection is only used if the option " Only backup
in file, no inserts into table" is not set.

Self-defined query Check this if the source data should be read from a query. Otherwise the component takes
the data from the given source table

Source Table Source table, if not a self-defined query is used.

Source table where
clause

The where condition. A missing where keyword will be added automatically.

Truncate Table Check this if the component have to truncate the table before import new data.

Disable keys while
importing

This option allows to switch off the constraints on the table. It improves the performance
but you will recognise records violating a constraint only at the end of the processing, when
the keys are enabled again.

Enable exclude source
columns

This enables the table of the columns to exclude

Source columns to
exclude

Add here the names of the columns which have to be excluded. The generated query will
not contain these columns. This works only if the query is generated from the component
itself, if you provide your own query, this list will not be applied.

Enable columns with
fixed values

This enables the table of fixed column values

Columns with fixed
values

If the target table expect some columns with fixed valued, setup them here.
The value expression is a java expression like context variables or literals.

Log Interval Because of there is no flow visible in the job, the component sends a log message about the
progress. Setup here how often this happened. This interval is also the interval in which the
component detects the end of the processing or errors.

Die On Error If there is something wrong while reading or writing data, the component will throw an
error to the job.

Backup Data in File If true, the component writes the source data also in a CSV-file.
See the format information below.

Only backup in file, no
inserts into table

If true, the component only writes the backup data and performs no inserts (and also no
truncates etc.)

Backup file or directory If it is a directory, the component use the target table name as file name +".csv" and if the
entry points to a file, it takes exactly this to write into.

Export boolean as
number

If true boolean values will exported in the file as 0 or 1 instead of false or true.

Format information about the backup file:

• The charset is UTF-8
• The line delimiter is in UNIX format
• Fields are separated by semicolon
• All values are quoted with double quote
• Line breaks in a field content will survive
• Already existing double quotes will be escaped with a backslash
• Already existing backslashes will also be escaped
• Null values are written as \N
• Boolean values are written per default as 0 or 1 (can be changed)
• Date, datetime or timestamp values are written in the format yyyy-MM-dd HH:mm:ss

This is a very common file format to transfer data. These kind of files can be directly used with the MySQL bulk
import.

Advanced Settings

Property Content

Source select fetch size The number records the component let the driver read at once. This can significant
increase the performance.

Insert batch size The component uses the batch mode and this is the number of records kept in memory until
send to the database as batch request.

Logout query If set, the component prints the select query to standard out.

Logout insert statement If set, the component prints the insert statement to standard out. It is a prepared statement
printed once.

Enable Log4J Enables the internally used Log4J framework

Debug In case of problems the component prints a lot of useful debugging information

Custom Type Mapping Here you can setup in which way specific database types are mapped to the internal java
types. All types not mentioned here will be read as Object and transferred to the target
database as Object.

Reuse data model
information for further
runs

This option keeps the already collected information about schemas, tables and columns
within the memory for further usage. This can shorten the necessary initialisation phase.

Alternative key to keep
the data model in
memory

The data model information will be hold by a key in the memory. By using the same key
for different components you can share the same data model for different components.
Normally it is supposed to keep this attribute empty. In this case the data model will be
reused only for the same component.

Return values

Return value Content

ERROR_MESSAGE Last error message

NB_LINE Number rows read

NB_INSERTS Number rows inserted into the target table

SOURCE_QUERY Query used to select the source records

SOURCE_TABLE Source table (not in case of using self-defined query)

TARGET_TABLE Target table (not in case of using only backup mode)

BACKUP_FILE The current written backup file with the full path.

Scenario 1: Copy tables from the actual database into a mirror database

This job reads all table names from the DWH database and compares it with the table names from the mirror database
and starts the transfer only for the tables existing in both databases.

The table name is the same for source and target. The component takes both connections build at the start of the job and
should therefore not close them because the component runs within an iteration.

Scenario 2: Backup all tables

In this scenario all tables will be simply dumped as CSV files but the job have to avoid dumping a table twice.
This is the steering job:

... and this is the simple worker job triggered here:

Because of the option "Only backup in file, no inserts in target table" we only need one connection and all settings for
the target table are hidden.

