
 Talend User Component tGoogleAnalyticsUnsampledReports

Purpose and procedure

This component manages Google Analytics un-sampled reports.
Un-sampled reports are only available to premium analytics accounts.
There are limitations for the usage of un-sampled reports. Per account you can start 100 reports per day.
Un-sampled reports are reports, which avoids sampling regardless the size of the undelaying raw data.
These reports will be processed asynchronously.
Steps to run un-sampled reports:

1. Start the report
2. Wait for the status COMPLETED
3. Download the report result as CSV file from the Google Drive
4. Parse the result file
5. Delete a report

A service account can also have its own drive. Unfortunately there is no option to take a look into this drive for a
service account from the Drive web interface. This component supports step 1, 2 and 4.
For step 3: (download the file) use the user component tGoogleDrive.

It is supposed to proceed this way consisting of these 3 tasks:

• Starting all necessary un-sampled reports.
• Read the metadata of all reports related to the current view (profile) and check their status frequently. To

support a reliable proceeding it is strongly recommended to persist the report metadata into a database table.
The component provides an input flow and schema, which can be used for this table.

• Download and parse (and store the data) all result files for the completed reports
All tasks should be done in separate jobs. Please be aware it could take minimum about 10 minutes for the Google
servers to finish one report. A typical duration time is about one hour.

The component uses the Core Reporting API 3.0 and the Authentication API OAuth 2.0 final.
To provide the ability to run in multiple iterations the component has special capabilities to avoid multiple logins
through iterations. Usually automated processes should not use personal accounts. This requirement is addressed by
using a service account, which are the only preferred way to login into Google Analytics for automated processes.
Please in case of problems check the checklist at the end of this document.

This component can be set to different modes to support the different steps. A change of the mode reconfigures the
component in its properties and flows.

Talend-Integration

This component can be found in the palette under Business->Google
This component provides an input flow and several return values (depending on the operational mode).

Because of the very different functionality of this component in the different modes all modes are described with all
aspects in separate chapters.

Parameters and Usage

There are 3 different functionalities, which have to choose with the operational mode switch.

Property Content

Operational Mode Switches between the different modes the component provides.
Start un-sampled report (START): Start an un-sampled report. Means the report will be
sent to Google and is awaiting it processing.
List un-sampled reports (LIST): In this mode the component reads the meta information of
all reports related to a given view. If the status is COMPLETED the result file can be
downloaded.
Parse report result file (PARSE): In this mode the component reads the downloaded result
file of one report and extracts the key figures.
Delete a Unsampled Report: Because of the limitation of the number of current active
reports it is necessary to delete done reports. This delete function was introduced by Google
in December 2015. Before this function Google it self run automated processes but this leads
sometimes to bottlenecks.

Parameters for the operational modes: START and LIST to establish the connection
Only in these both modes a connection to the Google servers and therefore authentication is needed.
It is supposed to use a service account because this is the preferred authentication mode for background processes.
For test proposes (especially if you want to see the result files in your personal Google account) it could be helpful to
use the Application Client-ID authorization.

Property Content Data types

Application Name Not necessary, but recommended by Google.
Simple provide the name of your application gathering data. Required

String

Authentication Method Choose the method to authenticate:
Service Account or Client-ID for native applications

String

Properties to use the Service Account

Property Content Data types

Service Account Email The email address of the service account. Google creates this address within the
process of creating a service account. Only for service accounts! Required

String

Key File (p12) The Service Account Login works with private key file for authentication. In
the process of creating a service account you download this file. Only for
service accounts Required

String

Properties to use the an Client-ID for native application

Property Content Data types

User Account Email Email of the user account or the Client-ID String

Client secret file (json) This json file downloaded for the Client-ID String

The usage of the Client-ID for native applications expects on the first run an user interaction with the Google web page
and after finishing the form to approve the access right you need to close the browser to let the component continue,
otherwise the authentication process will not complete.

Operational Mode: START

In this mode the component initiate an un-sampled report. Every new such requests is a new report regardless if the
parameters are the same as the last one. Be aware of the quotas limiting the number of reports per day and web
property. Currently the limit is 1000 reports per day and web property.
To start a report your need pretty much the same information as for the normal Reporting API but additional the
account-id and web-property-id are needed.

Parameters to set the report context

Property Content Data types

Account-Id Account-Id Long, String

Web-property-Id Web-Property-Id String

View-Id (Profile-Id) View-Id (formally known as profile-Id) Long, String

Properties to define the report

 Property Content Data types

Report title A report must have a title. This title will be also the name of the result file in the
Google Drive.
It is supposed to give every report its own title. It is a good practice to add the report
date to the title.
Unlike in the web interface every request is a new report and existing reports cannot
be reused via the API.

String

Start Date All queries need always a time range (only date, not time). Required! Date, String
(yyyy-MM-dd)

End Date Time range end. If you want gather data for one date, use start date as end date.
Required!

Date, String
(yyyy-MM-dd)

Dimensions Dimensions are like group clauses. These dimensions will group the metric values.
See advise for notations below. Separate multiple dimensions with a comma.

String

Metrics Things you want to measure. Separate multiple metrics with a comma.
See advise for notations below. Required!

String

Filters Contains all used filters as concatenated string.
See advise for notation below.

String

Segment Segments are stored filters within Google Analytics, which applies to sessions.
If a service account is used it is necessary to declare dynamic segments here because
normal segments are always bound to a personal account.

String

Report-ID Only for the Delete function. This is the alpha-numeric unique ID of an report String

Advice for filter and segment notation

For dimensions, metrics, filters and sorts you have to use the notation from the Google Core API:
https://developers.google.com/analytics/devguides/reporting/core/dimsmets

Filters can be concatenated with an OR or AND operator.
Separate filter expressions with a comma means OR
Separate filter expressions with a semicolon means AND

Comparison operators in filters and segment:

Operator Meaning

“==” Exact match to include

“!=” Exact match to exclude

“=~” Regex match to include (only for strings)

“!~” Regex match to exclude (only for strings)

“>=” Greater or equals than (only for numbers)

“=@” Contains string

“!@” Does not contains string

“>” Greater than (only for numbers)

“<=” Lower or equals than (only for numbers)

“<” Lower than (only for numbers)

If you use a service account it is not possible to use predefined segments made by a user because they are always
limited to the user context. At the moment the preferred way is using dynamic segments, which are made in exactly the
same way as the normal segments but only for the current report and not as predefined and named segment.

In this mode the component provides and output flow with the very first meta-data of the transmitted report
(as one record)

Return values

Return value Content

ERROR_MESSAGE Last error message

CURRENT_REPORT_ID The ID of the current sent report as response of the successful request.

Scenario to start the report

In this scenario the necessary information about the report are stored in a database table.

Here the configuration of the component in this scenario. The output flow returns the first created metadata
of the started report. The start and end date can also provided as java.util.Date typed objects.

Scenario to delete a report

This scenario is fairly simple. You have to select all reports which are already successful processed and
iterate through the reports. Set the actual report-id as parameter in the component setting Report-ID and
that’s it. In this mode the component has only the parameters to establish the connection (Setup Client) and
choose the Account-Id, Web-Property-Id and View-Id and at least the Report-Id if the report to delete.

If the component does not throw an error, the delete has been finished successfully.

I suggest in the own database not to delete the record about the deleted report but set a flag (or date) to mark
the report as deleted. This way the important information about the report processing still persists and can be
used to restore data in an accident.
In this mode the only return value is the actual given report-Id as CURRENT_REPORT_ID. This helps to
build convenient job designs.

Operational Mode: LIST

The component connects to the Google servers and reads the metadata for the un-sampled reports for the given context.

Parameters to set the context to list the reports for

Property Content Data-types

Account-Id Account-Id. String, Long

Web-Property-Id Web-Property-Id is the ID of the web site. String

View-Id (Profile-Id) ID of the View (formally known as profile) String, Long

Here a typical job gathering the report metadata for a context.

To recognize the different modes of the component in a job it is a good practice to set as View for the component this
term: __UNIQUE_NAME__: __MODE__

The component provides an output flow with this schema:

Return values

Return value Content

ERROR_MESSAGE Last error message

NB_LINE_UNSAMPLED_REPORTS Number un-sampled reports for the given view (profile)

Operational Mode: PARSE

In this mode the component does not connect to the Google servers, instead it reads a downloaded result file and parse
it. This file is actually a csv file but has an unstable number of header lines and the field order is sometimes disturbed if
a segment was used in the report. This makes it hard to use here the normal file input components Talend provides.
The header carries information about the profile, metrics, dimensions, filters and the segment. The component takes
care about these specific issues and provides the same output features as the component tGoogleAnalyticsInput to make
it easy to reuse the same methods to store the values.

Properties

 Property Content Data types

Report Result File Set here the file name of the result file, which is already downloaded
(e.g. with the help of the tGoogleDrive component). Required!

String

Normalized Output Flows Choose if you want to use a plain schema (you have to know at design
time what columns your file will provide).

Boolean

Exclude ga:date dimension and
provide value as return value

Set this to exclude the ga:date dimension from the normalized output
flow for dimension and instead set the ga:date value in the globalMap
as return value (available while the flow runs).

Boolean

Use Header info for
Dimensions and Metrics

If you set this option, the component ignores the dimension and
metrics settings below and takes this information from the header of
the result file.

Boolean

Dimensions If not taken from the file header. The information is necessary to build
the normalized schema. Example: “ga:date,ga:source,ga:keyword”

String

Metrics If not taken from the file header. The information is necessary to build
the normalized schema. Example: “ga:visits,ga:newVisits”

String

Using flat (plain) output

In the schema you need an amount of columns equals to the sum of the number of dimensions and metrics.
Columns in the schema must start at first with dimensions (if provided) and ends with metrics.
Schema column types must match to the data types of the dimensions and metrics. The schema column names can differ
from the names of dimensions and metrics. Only the order and there types are important.
Metric columns should be of the type double. Google always provides a value and send never null or something
different than a number.
In Talend schema columns must follow the Java naming rules therefore avoid writing ga:xxx instead use the name
without the ga: namespace prefix.
Important: For date dimensions (e.g. ga:date) you must specify the date pattern as “yyyyMMdd” if you want it as Date
typed value.

Using normalized output

If a normalized output is used the component reads internal the plain records and folds them into the normalized
outputs.

Return values

Return value Content Type

ERROR_MESSAGE Last error message String

NB_LINE Number plain records (only set if normalization is not used) Integer

NB_LINE_METRIC_VALUES Number of normalized metric records. Integer

NB_LINE_DIMEMSION_VALUES Number of normalized dimension records Integer

REPORT_PROFILE_ID View used to build the report String

REPORT_METRICS Metrics of the report String

REPORT_DIMENSIONS Dimensions of the report String

REPORT_FILTERS Filters used for the report String

REPORT_SEGMENT Segment used for the report String

REPORT_START_DATE Start date for the report (as String yyyy-MM-dd) String

REPORT_END_DATE End date for the report (as String yyyy-MM-dd) String

CURRENT_DATE The value of the ga:date dimension (if present in the file) for
every row. This value is only available in the “Normalized
Flow” mode.

Date

The REPORT_xxx values will be filled just before delivering the first output, though it can be used to enhance the
output flows.

Explanation for the normalized output

The normalized output as made for scenarios in which the job will be configured with metrics and dimensions at
runtime. In this use case it is not possible to declare the appropriated schema for the flat output.
The normalization creates 2 read only output schemas:

Dimensions

Column Type Meaning

ROW_NUM int The row number from the original flat result row. It identifies the records, which
belongs to together.

DIMENSION_NAME String Name of the dimension

DIMENSION_VALUE String Value of the dimension

Metrics

Column Type Meaning

ROW_NUM int The row number from the original flat result row. It identifies the records, which
belongs together.

METRIC_NAME String Name of the metric

METRIC_VALUE Double Value of the metric

Comparison of a plain output to a normalized output

Given the dimensions was set to: "ga:date,ga:source,ga:keyword" and the metrics was set to: "ga:visitors,ga:newVisits"
The information about dimension and metrics can read retrieved from the input file if the option

Here some example outputs:
The plain output … and the corresponding normalized output

Next a real live scenario for using the normalized output in conjunction with the usage of the meta-data (gathered with
the component tGoogleAnalyticsManagement):

Here the configuration of the component for parsing a result file:

The file name in this scenario will be
assembled with the download folder and the
report_id and the report_date.

Note the checked option “Exclude ga:date
dimension …”. The value of the ga:date
dimension will be used in the tMap.

Expression for a e.g. report_date output
column in the example:

((java.util.Date)globalMap.get("tGoogleAnalyticsUnsampledReports_1_CURRENT_DATE")) != null ?
((java.util.Date)globalMap.get("tGoogleAnalyticsUnsampledReports_1_CURRENT_DATE")) : context.report_date

The given date for the report (as context parameter) will be replaced by the ga:date value.
This makes the import cleverer. For reports does not containing the ga:date dimensions the parameter will be used and
for reports carrying the date its value will be used.
This job is designed to gather the data for one day and one report (a combination of a view, dimensions, metrics and
filters very much like a custom report in the Google Analytics dashboard).
This job gets the view-ID, dimensions, metrics and filters as context variables and will be called, as much there are
queries and dates to process.
The tMaps exchanges the dimension names and metric names with their numeric ids and adds a report-ID and the
current date into the output flow for the database.
To get this job restart-able everything is done within a transaction and the previous data for the report and date will be
deleted at first.
By the way, take note about the way to handle errors here, this is very easy and avoid implementing the error handling
multiple times. The anchors are tJava components without any code.

It is supposed to use gather the Analytics metadata to be sure you have access to all necessary data and to be able to
build a star schema for the dimensions and metrics. Take a look at the component tGoogleAnalyticsManagement.

Configuration checklist:

1. Is the email of the service account added to all relevant views (profiles)?
2. Is the system time of the host running the job synchronized with a NTP server?
3. Is the Google Analytics API enabled in the Google API Console?
4. Is the used account a premium account?

Tip:
Check your report at first in the Google Analytics API Explorer to get an idea if the data works for you.

Advanced Option Parameters

Property Content

Timeout in s How long should the component wait for getting the first result and fetching all result
with one internal iteration

Static Time Offset (to past) Within the process of login, the component requests an access token and use the local
time stamp (because these tokens will expire after a couple of seconds)
Google rejects all requests to access tokens when the request is in the future compared to
the timestamp in Google servers. If you experience such kind of problems, this options
let the requests appear to be more in the past (5-10s was recognized as good time shift)

Fetch Size This is the amount of data the component fetches at once. The value is used to set the
max_rows attribute. max_rows means not the absolute amount of data! The component
manages setting the start index to get all data. To achieve this, the component iterates as
long as the last result set are completely fetched.

Local Number Format You can get numbers in various formats. Here you can define the locale in which format
double or float values are should textual format by the API.

Reuse Client for Iterations If you use this component in iterations it is strongly recommended to set this option. It
saves time to authenticate unnecessary often and avoids problems because of max
amount of connects per time range.

Distinct Name Extension The client will be kept with an automatically created name:
Talend-Name-Component name + job name. In case this is not distinct enough, you can
specify an additional extension to the name.

